Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 579(7797): 111-117, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103177

RESUMO

The avascular nature of cartilage makes it a unique tissue1-4, but whether and how the absence of nutrient supply regulates chondrogenesis remain unknown. Here we show that obstruction of vascular invasion during bone healing favours chondrogenic over osteogenic differentiation of skeletal progenitor cells. Unexpectedly, this process is driven by a decreased availability of extracellular lipids. When lipids are scarce, skeletal progenitors activate forkhead box O (FOXO) transcription factors, which bind to the Sox9 promoter and increase its expression. Besides initiating chondrogenesis, SOX9 acts as a regulator of cellular metabolism by suppressing oxidation of fatty acids, and thus adapts the cells to an avascular life. Our results define lipid scarcity as an important determinant of chondrogenic commitment, reveal a role for FOXO transcription factors during lipid starvation, and identify SOX9 as a critical metabolic mediator. These data highlight the importance of the nutritional microenvironment in the specification of skeletal cell fate.


Assuntos
Osso e Ossos/citologia , Microambiente Celular , Condrogênese , Metabolismo dos Lipídeos , Fatores de Transcrição SOX9/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Animais , Osso e Ossos/irrigação sanguínea , Condrócitos/citologia , Condrócitos/metabolismo , Ácidos Graxos/metabolismo , Feminino , Privação de Alimentos , Fatores de Transcrição Forkhead/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteogênese , Oxirredução , Fatores de Transcrição SOX9/genética , Transdução de Sinais , Cicatrização
2.
Cell Metab ; 28(6): 881-894.e13, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30146488

RESUMO

Little is known about the metabolism of quiescent endothelial cells (QECs). Nonetheless, when dysfunctional, QECs contribute to multiple diseases. Previously, we demonstrated that proliferating endothelial cells (PECs) use fatty acid ß-oxidation (FAO) for de novo dNTP synthesis. We report now that QECs are not hypometabolic, but upregulate FAO >3-fold higher than PECs, not to support biomass or energy production but to sustain the tricarboxylic acid cycle for redox homeostasis through NADPH regeneration. Hence, endothelial loss of FAO-controlling CPT1A in CPT1AΔEC mice promotes EC dysfunction (leukocyte infiltration, barrier disruption) by increasing endothelial oxidative stress, rendering CPT1AΔEC mice more susceptible to LPS and inflammatory bowel disease. Mechanistically, Notch1 orchestrates the use of FAO for redox balance in QECs. Supplementation of acetate (metabolized to acetyl-coenzyme A) restores endothelial quiescence and counters oxidative stress-mediated EC dysfunction in CPT1AΔEC mice, offering therapeutic opportunities. Thus, QECs use FAO for vasculoprotection against oxidative stress-prone exposure.


Assuntos
Carnitina O-Palmitoiltransferase/metabolismo , Metabolismo Energético , Ácidos Graxos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , NADP/metabolismo , Receptor Notch1/metabolismo , Animais , Proliferação de Células , Células HEK293 , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução , Estresse Oxidativo
3.
Circulation ; 136(25): 2451-2467, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-28971999

RESUMO

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by abnormal growth and enhanced glycolysis of pulmonary artery endothelial cells. However, the mechanisms underlying alterations in energy production have not been identified. METHODS: Here, we examined the miRNA and proteomic profiles of blood outgrowth endothelial cells (BOECs) from patients with heritable PAH caused by mutations in the bone morphogenetic protein receptor type 2 (BMPR2) gene and patients with idiopathic PAH to determine mechanisms underlying abnormal endothelial glycolysis. We hypothesized that in BOECs from patients with PAH, the downregulation of microRNA-124 (miR-124), determined with a tiered systems biology approach, is responsible for increased expression of the splicing factor PTBP1 (polypyrimidine tract binding protein), resulting in alternative splicing of pyruvate kinase muscle isoforms 1 and 2 (PKM1 and 2) and consequently increased PKM2 expression. We questioned whether this alternative regulation plays a critical role in the hyperglycolytic phenotype of PAH endothelial cells. RESULTS: Heritable PAH and idiopathic PAH BOECs recapitulated the metabolic abnormalities observed in pulmonary artery endothelial cells from patients with idiopathic PAH, confirming a switch from oxidative phosphorylation to aerobic glycolysis. Overexpression of miR-124 or siRNA silencing of PTPB1 restored normal proliferation and glycolysis in heritable PAH BOECs, corrected the dysregulation of glycolytic genes and lactate production, and partially restored mitochondrial respiration. BMPR2 knockdown in control BOECs reduced the expression of miR-124, increased PTPB1, and enhanced glycolysis. Moreover, we observed reduced miR-124, increased PTPB1 and PKM2 expression, and significant dysregulation of glycolytic genes in the rat SUGEN-hypoxia model of severe PAH, characterized by reduced BMPR2 expression and endothelial hyperproliferation, supporting the relevance of this mechanism in vivo. CONCLUSIONS: Pulmonary vascular and circulating progenitor endothelial cells isolated from patients with PAH demonstrate downregulation of miR-124, leading to the metabolic and proliferative abnormalities in PAH ECs via PTPB1 and PKM1/PKM2. Therefore, the manipulation of this miRNA or its targets could represent a novel therapeutic approach for the treatment of PAH.


Assuntos
Hipertensão Pulmonar Primária Familiar/patologia , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , MicroRNAs/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/metabolismo , Piruvato Quinase/metabolismo , Animais , Antagomirs/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/antagonistas & inibidores , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo II/metabolismo , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/genética , Hipertensão Pulmonar Primária Familiar/metabolismo , Glicólise , Ribonucleoproteínas Nucleares Heterogêneas/antagonistas & inibidores , Ribonucleoproteínas Nucleares Heterogêneas/genética , Humanos , Quinases Lim/metabolismo , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteína de Ligação a Regiões Ricas em Polipirimidinas/antagonistas & inibidores , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , Piruvato Quinase/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Simportadores/metabolismo
4.
Circulation ; 136(8): 747-761, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28611091

RESUMO

BACKGROUND: Cardiovascular diseases remain the predominant cause of death worldwide, with the prevalence of heart failure continuing to increase. Despite increased knowledge of the metabolic alterations that occur in heart failure, novel therapies to treat the observed metabolic disturbances are still lacking. METHODS: Mice were subjected to pressure overload by means of angiotensin-II infusion or transversal aortic constriction. MicroRNA-146a was either genetically or pharmacologically knocked out or genetically overexpressed in cardiomyocytes. Furthermore, overexpression of dihydrolipoyl succinyltransferase (DLST) in the murine heart was performed by means of an adeno-associated virus. RESULTS: MicroRNA-146a was upregulated in whole heart tissue in multiple murine pressure overload models. Also, microRNA-146a levels were moderately increased in left ventricular biopsies of patients with aortic stenosis. Overexpression of microRNA-146a in cardiomyocytes provoked cardiac hypertrophy and left ventricular dysfunction in vivo, whereas genetic knockdown or pharmacological blockade of microRNA-146a blunted the hypertrophic response and attenuated cardiac dysfunction in vivo. Mechanistically, microRNA-146a reduced its target DLST-the E2 subcomponent of the α-ketoglutarate dehydrogenase complex, a rate-controlling tricarboxylic acid cycle enzyme. DLST protein levels significantly decreased on pressure overload in wild-type mice, paralleling a decreased oxidative metabolism, whereas DLST protein levels and hence oxidative metabolism were partially maintained in microRNA-146a knockout mice. Moreover, overexpression of DLST in wild-type mice protected against cardiac hypertrophy and dysfunction in vivo. CONCLUSIONS: Altogether we show that the microRNA-146a and its target DLST are important metabolic players in left ventricular dysfunction.


Assuntos
Aciltransferases/biossíntese , Cardiomegalia/metabolismo , Regulação Enzimológica da Expressão Gênica , MicroRNAs/antagonistas & inibidores , MicroRNAs/biossíntese , Disfunção Ventricular Esquerda/metabolismo , Aciltransferases/genética , Animais , Animais Recém-Nascidos , Cardiomegalia/genética , Cardiomegalia/prevenção & controle , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Ratos , Ratos Endogâmicos Lew , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/prevenção & controle
5.
Cancer Cell ; 30(6): 968-985, 2016 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-27866851

RESUMO

Abnormal tumor vessels promote metastasis and impair chemotherapy. Hence, tumor vessel normalization (TVN) is emerging as an anti-cancer treatment. Here, we show that tumor endothelial cells (ECs) have a hyper-glycolytic metabolism, shunting intermediates to nucleotide synthesis. EC haplo-deficiency or blockade of the glycolytic activator PFKFB3 did not affect tumor growth, but reduced cancer cell invasion, intravasation, and metastasis by normalizing tumor vessels, which improved vessel maturation and perfusion. Mechanistically, PFKFB3 inhibition tightened the vascular barrier by reducing VE-cadherin endocytosis in ECs, and rendering pericytes more quiescent and adhesive (via upregulation of N-cadherin) through glycolysis reduction; it also lowered the expression of cancer cell adhesion molecules in ECs by decreasing NF-κB signaling. PFKFB3-blockade treatment also improved chemotherapy of primary and metastatic tumors.


Assuntos
Cisplatino/administração & dosagem , Células Epiteliais/metabolismo , Neoplasias/metabolismo , Fosfofrutoquinase-2/antagonistas & inibidores , Tamoxifeno/administração & dosagem , Animais , Caderinas/genética , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Cisplatino/farmacologia , Sinergismo Farmacológico , Tratamento Farmacológico , Células Epiteliais/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Tamoxifeno/farmacologia
6.
Cell Metab ; 23(2): 280-91, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26774962

RESUMO

The oxygen-sensing prolyl hydroxylase domain proteins (PHDs) regulate cellular metabolism, but their role in neuronal metabolism during stroke is unknown. Here we report that PHD1 deficiency provides neuroprotection in a murine model of permanent brain ischemia. This was not due to an increased collateral vessel network. Instead, PHD1(-/-) neurons were protected against oxygen-nutrient deprivation by reprogramming glucose metabolism. Indeed, PHD1(-/-) neurons enhanced glucose flux through the oxidative pentose phosphate pathway by diverting glucose away from glycolysis. As a result, PHD1(-/-) neurons increased their redox buffering capacity to scavenge oxygen radicals in ischemia. Intracerebroventricular injection of PHD1-antisense oligonucleotides reduced the cerebral infarct size and neurological deficits following stroke. These data identify PHD1 as a regulator of neuronal metabolism and a potential therapeutic target in ischemic stroke.


Assuntos
Isquemia Encefálica/prevenção & controle , Reprogramação Celular , Deleção de Genes , Neurônios/metabolismo , Oxigênio/metabolismo , Pró-Colágeno-Prolina Dioxigenase/metabolismo , Acidente Vascular Cerebral/prevenção & controle , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Isquemia Encefálica/complicações , Carbono/metabolismo , Reprogramação Celular/efeitos dos fármacos , Sequestradores de Radicais Livres/metabolismo , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Injeções Intraventriculares , Camundongos Knockout , Neurônios/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Oligonucleotídeos/administração & dosagem , Oligonucleotídeos/farmacologia , Oxirredução/efeitos dos fármacos , Via de Pentose Fosfato/efeitos dos fármacos , Fenótipo , Pró-Colágeno-Prolina Dioxigenase/deficiência , Espécies Reativas de Oxigênio/metabolismo , Acidente Vascular Cerebral/complicações
7.
Nature ; 529(7585): 216-20, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26735015

RESUMO

Endothelial cells (ECs) are plastic cells that can switch between growth states with different bioenergetic and biosynthetic requirements. Although quiescent in most healthy tissues, ECs divide and migrate rapidly upon proangiogenic stimulation. Adjusting endothelial metabolism to the growth state is central to normal vessel growth and function, yet it is poorly understood at the molecular level. Here we report that the forkhead box O (FOXO) transcription factor FOXO1 is an essential regulator of vascular growth that couples metabolic and proliferative activities in ECs. Endothelial-restricted deletion of FOXO1 in mice induces a profound increase in EC proliferation that interferes with coordinated sprouting, thereby causing hyperplasia and vessel enlargement. Conversely, forced expression of FOXO1 restricts vascular expansion and leads to vessel thinning and hypobranching. We find that FOXO1 acts as a gatekeeper of endothelial quiescence, which decelerates metabolic activity by reducing glycolysis and mitochondrial respiration. Mechanistically, FOXO1 suppresses signalling by MYC (also known as c-MYC), a powerful driver of anabolic metabolism and growth. MYC ablation impairs glycolysis, mitochondrial function and proliferation of ECs while its EC-specific overexpression fuels these processes. Moreover, restoration of MYC signalling in FOXO1-overexpressing endothelium normalizes metabolic activity and branching behaviour. Our findings identify FOXO1 as a critical rheostat of vascular expansion and define the FOXO1-MYC transcriptional network as a novel metabolic checkpoint during endothelial growth and proliferation.


Assuntos
Endotélio Vascular/crescimento & desenvolvimento , Endotélio Vascular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Animais , Proliferação de Células , Respiração Celular , Endotélio Vascular/citologia , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Glicólise , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-myc/deficiência , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Transdução de Sinais
8.
Cell Cycle ; 14(21): 3379-88, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26431254

RESUMO

Cell division is a metabolically demanding process, requiring the production of large amounts of energy and biomass. Not surprisingly therefore, a cell's decision to initiate division is co-determined by its metabolic status and the availability of nutrients. Emerging evidence reveals that metabolism is not only undergoing substantial changes during the cell cycle, but it is becoming equally clear that metabolism regulates cell cycle progression. Here, we overview the emerging role of those metabolic pathways that have been best characterized to change during or influence cell cycle progression. We then studied how Notch signaling, a key angiogenic pathway that inhibits endothelial cell (EC) proliferation, controls EC metabolism (glycolysis) during the cell cycle.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Proliferação de Células , Metabolismo Energético , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Células Cultivadas , Pontos de Checagem da Fase G1 do Ciclo Celular , Glicólise , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fenótipo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Transfecção , Ubiquitina-Proteína Ligases/metabolismo
10.
Nature ; 520(7546): 192-197, 2015 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-25830893

RESUMO

The metabolism of endothelial cells during vessel sprouting remains poorly studied. Here we report that endothelial loss of CPT1A, a rate-limiting enzyme of fatty acid oxidation (FAO), causes vascular sprouting defects due to impaired proliferation, not migration, of human and murine endothelial cells. Reduction of FAO in endothelial cells did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labelling studies in control endothelial cells showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1A silencing reduced these processes and depleted endothelial cell stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1A-silenced endothelial cells. Finally, CPT1 blockade inhibited pathological ocular angiogenesis in mice, suggesting a novel strategy for blocking angiogenesis.


Assuntos
Carbono/metabolismo , Células Endoteliais/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Nucleotídeos/biossíntese , Ácido Acético/farmacologia , Trifosfato de Adenosina/metabolismo , Animais , Vasos Sanguíneos/citologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patologia , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclo do Ácido Cítrico , DNA/biossíntese , Modelos Animais de Doenças , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Inativação Gênica , Glucose/metabolismo , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Nucleotídeos/química , Nucleotídeos/farmacologia , Oxirredução/efeitos dos fármacos , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/metabolismo , Retinopatia da Prematuridade/patologia
11.
Circulation ; 131(9): 815-26, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25561514

RESUMO

BACKGROUND: Microvascular endothelium in different organs is specialized to fulfill the particular needs of parenchymal cells. However, specific information about heart capillary endothelial cells (ECs) is lacking. METHODS AND RESULTS: Using microarray profiling on freshly isolated ECs from heart, brain, and liver, we revealed a genetic signature for microvascular heart ECs and identified Meox2/Tcf15 heterodimers as novel transcriptional determinants. This signature was largely shared with skeletal muscle and adipose tissue endothelium and was enriched in genes encoding fatty acid (FA) transport-related proteins. Using gain- and loss-of-function approaches, we showed that Meox2/Tcf15 mediate FA uptake in heart ECs, in part, by driving endothelial CD36 and lipoprotein lipase expression and facilitate FA transport across heart ECs. Combined Meox2 and Tcf15 haplodeficiency impaired FA uptake in heart ECs and reduced FA transfer to cardiomyocytes. In the long term, this combined haplodeficiency resulted in impaired cardiac contractility. CONCLUSIONS: Our findings highlight a regulatory role for ECs in FA transfer to the heart parenchyma and unveil 2 of its intrinsic regulators. Our insights could be used to develop new strategies based on endothelial Meox2/Tcf15 targeting to modulate FA transfer to the heart and remedy cardiac dysfunction resulting from altered energy substrate usage.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Células Endoteliais/metabolismo , Proteínas de Ligação a Ácido Graxo/biossíntese , Ácidos Graxos/metabolismo , Proteínas de Homeodomínio/fisiologia , Miocárdio/metabolismo , Tecido Adiposo/irrigação sanguínea , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Antígenos CD36/biossíntese , Antígenos CD36/genética , Baixo Débito Cardíaco/etiologia , Baixo Débito Cardíaco/genética , Baixo Débito Cardíaco/metabolismo , Células Cultivadas , Vasos Coronários/citologia , Proteínas de Ligação a Ácido Graxo/genética , Glucose/metabolismo , Heterozigoto , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Humanos , Lipase Lipoproteica/biossíntese , Lipase Lipoproteica/genética , Lipoproteínas VLDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mapeamento de Interação de Proteínas , RNA Interferente Pequeno/farmacologia , Análise Serial de Tecidos , Transcriptoma
12.
Cancer Cell ; 26(2): 190-206, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25117709

RESUMO

Chloroquine (CQ) has been evaluated as an autophagy blocker for cancer treatment, but it is unknown if it acts solely by inhibiting cancer cell autophagy. We report that CQ reduced tumor growth but improved the tumor milieu. By normalizing tumor vessel structure and function and increasing perfusion, CQ reduced hypoxia, cancer cell invasion, and metastasis, while improving chemotherapy delivery and response. Inhibiting autophagy in cancer cells or endothelial cells (ECs) failed to induce such effects. CQ's vessel normalization activity relied mainly on alterations of endosomal Notch1 trafficking and signaling in ECs and was abrogated by Notch1 deletion in ECs in vivo. Thus, autophagy-independent vessel normalization by CQ restrains tumor invasion and metastasis while improving chemotherapy, supporting the use of CQ for anticancer treatment.


Assuntos
Inibidores da Angiogênese/farmacologia , Autofagia , Cloroquina/farmacologia , Melanoma Experimental/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Neoplasias Cutâneas/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Animais , Proteína 5 Relacionada à Autofagia , Camptotecina/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cloroquina/uso terapêutico , Sinergismo Farmacológico , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/fisiologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Humanos , Melanoma Experimental/irrigação sanguínea , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Proteínas Associadas aos Microtúbulos/metabolismo , Invasividade Neoplásica , Neovascularização Patológica/metabolismo , Receptor Notch1/metabolismo , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/patologia , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Cell Metab ; 19(1): 37-48, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24332967

RESUMO

Strategies targeting pathological angiogenesis have focused primarily on blocking vascular endothelial growth factor (VEGF), but resistance and insufficient efficacy limit their success, mandating alternative antiangiogenic strategies. We recently provided genetic evidence that the glycolytic activator phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3) promotes vessel formation but did not explore the antiangiogenic therapeutic potential of PFKFB3 blockade. Here, we show that blockade of PFKFB3 by the small molecule 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO) reduced vessel sprouting in endothelial cell (EC) spheroids, zebrafish embryos, and the postnatal mouse retina by inhibiting EC proliferation and migration. 3PO also suppressed vascular hyperbranching induced by inhibition of Notch or VEGF receptor 1 (VEGFR1) and amplified the antiangiogenic effect of VEGF blockade. Although 3PO reduced glycolysis only partially and transiently in vivo, this sufficed to decrease pathological neovascularization in ocular and inflammatory models. These insights may offer therapeutic antiangiogenic opportunities.


Assuntos
Glicólise , Neovascularização Patológica/enzimologia , Fosfofrutoquinase-2/antagonistas & inibidores , Inibidores da Angiogênese/farmacologia , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/enzimologia , Células Endoteliais da Veia Umbilical Humana/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neovascularização Patológica/genética , Neovascularização Fisiológica/efeitos dos fármacos , Neovascularização Fisiológica/genética , Fosfofrutoquinase-2/metabolismo , Piridinas/farmacologia , Vasos Retinianos/efeitos dos fármacos , Vasos Retinianos/crescimento & desenvolvimento , Vasos Retinianos/patologia , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Peixe-Zebra
14.
Cell Cycle ; 13(1): 16-22, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24335389

RESUMO

During vessel sprouting, a migratory endothelial tip cell guides the sprout, while proliferating stalk cells elongate the branch. Tip and stalk cell phenotypes are not genetically predetermined fates, but are dynamically interchangeable to ensure that the fittest endothelial cell (EC) leads the vessel sprout. ECs increase glycolysis when forming new blood vessels. Genetic deficiency of the glycolytic activator PFKFB3 in ECs reduces vascular sprouting by impairing migration of tip cells and proliferation of stalk cells. PFKFB3-driven glycolysis promotes the tip cell phenotype during vessel sprouting, since PFKFB3 overexpression overrules the pro-stalk activity of Notch signaling. Furthermore, PFKFB3-deficient ECs cannot compete with wild-type neighbors to form new blood vessels in chimeric mosaic mice. In addition, pharmacological PFKFB3 blockade reduces pathological angiogenesis with modest systemic effects, likely because it decreases glycolysis only partially and transiently.


Assuntos
Vasos Sanguíneos/crescimento & desenvolvimento , Glicólise/genética , Neovascularização Patológica/genética , Fosfofrutoquinase-2/genética , Animais , Vasos Sanguíneos/metabolismo , Linhagem da Célula , Proliferação de Células , Células Endoteliais/metabolismo , Humanos , Camundongos , Fosfofrutoquinase-2/metabolismo , Receptores Notch/genética , Transdução de Sinais/genética
15.
Cell ; 154(3): 651-63, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23911327

RESUMO

Vessel sprouting by migrating tip and proliferating stalk endothelial cells (ECs) is controlled by genetic signals (such as Notch), but it is unknown whether metabolism also regulates this process. Here, we show that ECs relied on glycolysis rather than on oxidative phosphorylation for ATP production and that loss of the glycolytic activator PFKFB3 in ECs impaired vessel formation. Mechanistically, PFKFB3 not only regulated EC proliferation but also controlled the formation of filopodia/lamellipodia and directional migration, in part by compartmentalizing with F-actin in motile protrusions. Mosaic in vitro and in vivo sprouting assays further revealed that PFKFB3 overexpression overruled the pro-stalk activity of Notch, whereas PFKFB3 deficiency impaired tip cell formation upon Notch blockade, implying that glycolysis regulates vessel branching.


Assuntos
Células Endoteliais/metabolismo , Glicólise , Neovascularização Fisiológica , Fosfofrutoquinase-2/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Células Endoteliais/citologia , Feminino , Deleção de Genes , Inativação Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfofrutoquinase-2/genética , Pseudópodes/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...